Oxycodone Hydrochloride 5mg/5ml Oral Solution
oxycodone hydrochloride solution should be taken at 4-6 hourly intervals. The dosage is dependent on the severity of the pain, and the patient’s previous history of analgesic requirements.
Increasing severity of pain will require an increased dosage of Oxycodone solution. The correct dosage for any individual patient is that which controls the pain and is well tolerated throughout the dosing period. Patients should be titrated to pain relief unless unmanageable adverse drug reactions prevent this.
The usual starting dose for opioid naïve patients or patients presenting with severe pain uncontrolled by weaker opioids is 5 mg, 4-6 hourly. The dose should then be carefully titrated, as frequently as once a day if necessary, to achieve pain relief. The majority of patients will not require a daily dose greater than 400 mg. However, a few patients may require higher doses.
Conversion from oral morphine:
Patients receiving oral morphine before oxycodone therapy should have their daily dose based on the following ratio: 10 mg of oral oxycodone is equivalent to 20 mg of oral morphine. It must be emphasised that this is a guide to the dose of Oxycodone solution required. Inter-patient variability requires that each patient is carefully titrated to the appropriate dose.
Elderly patients:
A dose adjustment is not usually necessary in elderly patients.
Controlled pharmacokinetic studies in elderly patients (aged over 65 years) have shown that, compared with younger adults, the clearance of oxycodone is only slightly reduced. No untoward adverse drug reactions were seen based on age, therefore adult doses and dosage intervals are appropriate.
Patients with renal or hepatic impairment:
The plasma concentration in this patient population may be increased. The dose initiation should follow a conservative approach in these patients. The recommended adult starting dose should be reduced by 50% (for example a total daily dose of 10 mg orally in opioid naïve patients), and each patient should be titrated to adequate pain control according to their clinical situation.
Paediatric population:
Oxycodone solution should not be used in patients under 18 years.
Use in non-malignant pain:
Opioids are not first line therapy for chronic non-malignant pain, nor are they recommended as the only treatment. Types of chronic pain which have been shown to be alleviated by strong opioids include chronic osteoarthritic pain and intervertebral disc disease. The need for continued treatment in non-malignant pain should be assessed at regular intervals.
Method of administration:
Oxycodone is for oral use.
Duration of treatment:
Oxycodone should not be used for longer than necessary. In common with other strong opioids, the need for continued treatment should be assessed at regular intervals.
Discontinuation of treatment:
When a patient no longer requires therapy with oxycodone, it may be advisable to taper the dose gradually to prevent symptoms of withdrawal.4.3 Contraindications
Hypersensitivity to oxycodone or to any of the excipients listed in section 6.1.
Oxycodone tablets must not be used in any situation where opioids are contraindicated: severe respiratory depression with hypoxia, paralytic ileus, acute abdomen, delayed gastric emptying, severe chronic obstructive lung disease, cor pulmonale, severe bronchial asthma, elevated carbon dioxide levels in the blood, moderate to severe hepatic impairment, chronic constipation.4.4 Special warnings and precautions for use
The major risk of opioid excess is respiratory depression.
Caution must be exercised when administering oxycodone to the debilitated elderly; opioid-dependent patients; patients with severely impaired pulmonary function, patients with impaired hepatic or renal function; patients with myxedema, hypothyroidism, Addison’s disease, toxic psychosis, prostate hypertrophy, adrenocortical insufficiency, alcoholism, delirium tremens, diseases of the biliary tract, pancreatitis, inflammatory bowel disorders, hypotension, hypovolaemia, raised intracranial pressure, head injury (due to risk of increased intracranial pressure) or patients taking MAO inhibitors.
Concomitant use of benzodiazepines and opioids may result in sedation, respiratory depression, coma and death. Because of these risks, concomitant prescribing of sedative medicines such as benzodiazepines or related drugs with opioids should be reserved for patients for whom alternative treatment options are not possible.
If a decision is made to prescribe benzodiazepines concomitantly with opioids, the lowest effective dose should be used, and the duration of treatment should be as short as possible (see also general dose recommendation in section 4.2).
The patients should be followed closely for signs and symptoms of respiratory depression and sedation. In this respect, it is strongly recommended to inform patients and their environment to be aware of these symptoms (see section 4.5).
Oxycodone solution should not be used where there is a possibility of paralytic ileus occurring. Should paralytic ileus be suspected or occur during use, Oxycodone solution should be discontinued immediately.
Oxycodone solution should be used with caution pre-operatively and within the first 12- 24 hours post-operatively.
As with all opioid preparations, oxycodone products should be used with caution following abdominal surgery as opioids are known to impair intestinal motility and should not be used until the physician is assured of normal bowel function.
Patients about to undergo additional pain relieving procedures (e.g. surgery, plexus blockade) should not receive Oxycodone solution for 6 hours prior to the intervention. If further treatment with oxycodone is indicated then the dosage should be adjusted to the new post-operative requirement.
For appropriate patients who suffer with chronic non-malignant pain, opioids should be used as part of a comprehensive treatment programme involving other medications and treatment modalities. A crucial part of the assessment of a patient with chronic non-malignant pain is the patient’s addiction and substance abuse history.
If opioid treatment is considered appropriate for the patient, then the main aim of treatment is not to minimise the dose of opioid but rather to achieve a dose which provides adequate pain relief with a minimum of side effects. There must be frequent contact between physician and patient so that dosage adjustments can be made. It is strongly recommended that the physician defines treatment outcomes in accordance with pain management guidelines. The physician and patient can then agree to discontinue treatment if these objectives are not met.
The patient may develop tolerance to the drug with chronic use and require progressively higher doses to maintain pain control. Prolonged use of this product may lead to physical dependence and a withdrawal syndrome may occur upon abrupt cessation of therapy. When a patient no longer requires therapy with oxycodone, it may be advisable to taper the dose gradually to prevent symptoms of withdrawal. The opioid abstinence or withdrawal syndrome is characterised by some or all of the following: restlessness, lacrimation, rhinorrhoea, yawning, perspiration, chills, myalgia, mydriasis and palpitations. Other symptoms also may develop, including: irritability, anxiety, backache, joint pain, weakness, abdominal cramps, insomnia, nausea, anorexia, vomiting, diarrhoea, or increased blood pressure, respiratory rate or heart rate.
Hyperalgesia that will not respond to a further dose increase of oxycodone may occur, particularly in high doses. An oxycodone dose reduction or change to an alternative opioid may be required.
Oxycodone has an abuse profile similar to other strong opioids. Oxycodone may be sought and abused by people with latent or manifest addiction disorders. There is potential for development of psychological dependence (addiction) to opioid analgesics, including oxycodone. Oxycodoneshould be used with particular care in patients with a history of alcohol and drug abuse.
As with other opioids, infants who are born to dependent mothers may exhibit withdrawal symptoms and may have respiratory depression at birth.
Abuse of oral dosage forms by parenteral administration can be expected to result in serious adverse events, which may be fatal.
Concomitant use of alcohol and Oxycodone solution may increase the undesirable effects of oxycodone hydrochloride solution; concomitant use should be avoided
Oxycodone 5mg/5ml solution contains approximately 3.5mg sodium per 5ml. A total daily dose of 400mg of this product contains approximately 277mg sodium. To be taken into consideration in patients on a controlled sodium diet.
Opioids, such as oxycodone hydrochloride may influence the hypothalamic-pituitary-adrenal or – gonadal axes. Some changes that can be seen include an increase in serum prolactin, and decreases in plasma cortisol and testosterone. Clinical symptoms may manifest from these hormonal changes.4.5 Interaction with other medicinal products and other forms of interaction
The concomitant use of sedative medicines such as benzodiazepines or related drugs such with opioids increases the risk of sedation, respiratory depression, coma and death because of additive CNS depressant effect. The dosage and duration of concomitant use should be limited (see section 4.4).
Drugs which affect the CNS include, but are not limited to tranquillisers, anaesthetics, hypnotics, anti-depressants, non-benzodiazepine sedatives, phenothiazines, neuroleptic drugs, alcohol, other opioids, muscle relaxants and antihypertensives.
Concomitant administration of oxycodone with anticholinergics or medicines with anticholinergic activity (e.g. tricyclic anti-depressants, antihistamines, antipsychotics, muscle relaxants, anti-Parkinson drugs) may result in increased anticholinergic adverse effects. Oxycodone should be used with caution and the dosage may need to be reduced in patients using these medications.
Concomitant administration of oxycodone with serotonin agents, such as a Selective Serotonin Re-uptake Inhibitor (SSRI) or a Serotonin Norepinephrine Re-uptake Inhibitor (SNRI) may cause serotonin toxicity. The symptoms of serotonin toxicity may include mental-status changes (e.g., agitation, hallucinations, coma), autonomic instability (e.g., tachycardia, labile blood pressure, hyperthermia), neuromuscular abnormalities (e.g., hyperreflexia, incoordination, rigidity), and/or gastrointestinal symptoms (e.g., nausea, vomiting, diarrhoea). oxycodone hydrochloride should be used with caution and the dosage may need to be reduced in patients using these medications.
MAO inhibitors are known to interact with narcotic analgesics. MAO-inhibitors cause CNS excitation or depression associated with hypertensive or hypotensive crisis (see section 4.4).
Alcohol may enhance the pharmacodynamics effects of Oxycodone, concomitant use should be avoided.
Oxycodone is metabolised mainly by CYP3A4, with a contribution from CYP2D6. The activities of these metabolic pathways may be inhibited or induced by various co-administered drugs or dietary elements.
CYP3A4 inhibitors, such as macrolide antibiotics (e.g. clarithromycin, erythromycin and telithromycin), azole-antifungals (e.g. ketoconazole, voriconazole, itraconazole, and posaconazole), protease inhibitors (e.g. boceprevir, ritonavir, indinavir, nelfinavir and saquinavir), cimetidine and grapefruit juice may cause a reduced clearance of oxycodone that could cause an increase of the plasma concentrations of oxycodone. Therefore the oxycodone dose may need to be adjusted accordingly.
Some specific examples are provided below:
• Itraconazole, a potent CYP3A4 inhibitor, administered 200 mg orally for five days, increased the AUC of oral oxycodone. On average, the AUC was approximately 2.4 times higher (range 1.5 – 3.4).
• Voriconazole, a CYP3A4 inhibitor, administered 200 mg twice-daily for four days (400 mg given as first two doses), increased the AUC of oral oxycodone. On average, the AUC was approximately 3.6 times higher (range 2.7 – 5.6).
• Telithromycin, a CYP3A4 inhibitor, administered 800 mg orally for four days, increased the AUC of oral oxycodone. On average, the AUC was approximately 1.8 times higher (range 1.3 – 2.3).
• Grapefruit Juice, a CYP3A4 inhibitor, administered as 200 ml three times a day for five days, increased the AUC of oral oxycodone. On average, the AUC was approximately 1.7 times higher (range 1.1 – 2.1).
CYP3A4 inducers, such as rifampicin, carbamazepine, phenytoin and St John´s Wort may induce the metabolism of oxycodone and cause an increased clearance of oxycodone that could cause a reduction of the plasma concentrations of oxycodone. The oxycodone dose may need to be adjusted accordingly.
Some specific examples are provided below:
• St Johns Wort, a CYP3A4 inducer, administered as 300 mg three times a day for fifteen days, reduced the AUC of oral oxycodone. On average, the AUC was approximately 50% lower (range 37-57%).
• Rifampicin, a CYP3A4 inducer, administered as 600 mg once-daily for seven days, reduced the AUC of oral oxycodone. On average, the AUC was approximately 86% lower
Drugs that inhibit CYP2D6 activity, such as paroxetine and quinidine, may cause decreased clearance of oxycodone which could lead to an increase in oxycodone plasma concentrations. Concurrent administration of quinidine with a modified release oxycodone tablet resulted in an increase in oxycodone Cmax by 11%, AUC by 13%, and t½ elim. by 14%. Also an increase in noroxycodone level was observed, (Cmax by 50%; AUC by 85%, and t½ elim. by 42%). The pharmacodynamics effects of oxycodone were not altered.4.6 Pregnancy and lactation
Pregnancy
Oxycodone solution is not recommended for use during pregnancy nor during labour. There are limited data from the use of oxycodone tablets in pregnant women. Infants born to mothers who have received opioids during the last 3 to 4 weeks before giving birth should be monitored for respiratory depression. Withdrawal symptoms may be observed in the newborn of mothers undergoing treatment with oxycodone hydrochloride tablets.
Why is this oxycodone hydrochloride prescribed?
oxycodone hydrochloride is used to relieve moderate to severe pain. Oxycodone extended-release tablets and extended-release capsules are used to relieve severe pain in people who are expected to need pain medication around the clock for a long time and who cannot be treated with other medications. Oxycodone extended-release tablets and extended-release capsules should not be used to treat pain that can be controlled by medication that is taken as needed. Oxycodone extended-release tablets, extended-release capsules, and concentrated solution should only be used to treat people who are tolerant (used to the effects of the medication) to opioid medications because they have taken this type of medication for at least one week. Oxycodone is in a class of medications called opiate (narcotic) analgesics. It works by changing the way the brain and nervous system respond to pain.
oxycodone hydrochloride
Oxycodone is also available in combination with acetaminophen (Oxycet, Percocet, Roxicet, Xartemis XR, others); aspirin (Percodan); and ibuprofen. This monograph only includes information about the use of oxycodone alone. If you are taking an oxycodone combination product, be sure to read information about all the ingredients in the product you are taking and ask your doctor or pharmacist for more information.